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The RICIS ConcePt

The University of Houston-Clear Lake established the Research Institute for

Computing and Information Systems (RICIS) In 1986 to encourage the NASA

Johnson Space Center [dSC} and local industry to actively support research

tn the computing and information sciences. As part of this endeavor, UHCL

proposed a partnership with JSC to jointly define and manage an Integrated

program of research in advanced data processing technology needed forJSC's

main missions, including administrative, engineering and science responsi-

blliUes. JSC agreed and entered into a continuing cooperative agreement

with UHCL beginning in May 1986. tojointlyplan and execute such research

through RICIS. Additionally, under Cooperative Agreement NCC 9-16,

computing and educational facilities are shared by the two institutions to

conduct the research.

The UIICL/RICIS mission is to conduct, coordinate, and disseminate research

and professional level education in computing and information systems to

serve the needs of the government, industry, community and academia.

RICIS combines resources of Ut tCL and its gateway affiliates to research and

develop materials, prototypes and publications on topics of mutual interest

to its sponsors and researchers. Within UtICL, the mission is being

implemented through Interdisciplinary Involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-

tion, Human Sciences and Humanities, and Natural and Applied Sciences.

RICIS also collaborates with industry in a companion program. This program

is focused on serving the research and advanced development needs of

industry.

Moreover, UHCL established relationships with Other unlversi|ies and re-

search organizations, having common research Interests, to provide addi-

tional sources of expertise to conduct needed research. For example, UHCL

has entered Into a special partnership with Texas A&M University to help

oversee RICIS research and education programs, while other research

organlzat!ons are Involved via the "gateway" concept.

A major role of RICIS then is to find the best match of sponsors, researchers

and research objectives t0advancekh0wlcdge In the computing and informa-

tion sciences. RICIS, worktngJotntly with its sponsors, advises on research

needs, recommends p_nclpals for conducting the research, provides tech-

nical and administrative support to coordinate the research and Integrates

technical results Into the goals of UHCL, NASA/JSC and Industry,
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This paper describes the research accomplished at the Knowledge Based

Systems Laboratory of the Department of Industrial Engineering at Texas

A&M University. Funding for the lab's research in Integrated Information

System Development Methgds mad To0! s has been_provided by the Air Force

Human Resources Laboratory, AFHRL/LRL, Wright-Patterson Air _rce

Base, Ohio 45433, under the technical direction of USAF Captain Michael

K. Painter, under subcontract through the NASA _CiS program at the Uni-

versity of Houston. The authors and the design team wish to acknowledge

the technical insights and ideas provided by Captain Painter in the perfor-

mance of this research as well as his assistance in the preparation of this

document.
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Summary

The Process Description Capture Method (IDEF3) is one of several ICAM

(Integrated Computer-Aided Manufacturing) DEFinition methods developed

by the Air Force to support systems engineering activities, and in particular,

to support information systems development. These methods have evolved as

a distillation of "good practice" experience by information system developers

and are designed to raise the performance level of the novice practitioner to

one comparable with that of an expert. IDEF3 is meant to serve as a knowl-

edge acquisition and requirements definition tool that structures the .user's

understanding of how a given process, event, or system works around pro-

cess descriptions. A special purpose graphical language accompanying the

method serves to highlight temporal precedence and causality relationships

relative to the process or event being described.

The purpose of the paper is to present a rigorous formalization of the

IDEF3 method. Formalization of a method is is accomplished to:

1. Identify the informal intuitions that motivate the method.

2. Provide a technical basis for integration with other methods.

3. Provide an objective basis for the comparison of methods.

4. Provide a technical basis and an engineering technique for the design
of new methods.

5. Provide accurate specifications for the design of automated method

support tools.

Included within this formalization are definitions of the basic concepts

employed by the IDEF3 method and the logic for how these concepts work

together to represent a particular view of reality. Also included is a descrip-

tion of the symbols and presentation rules for the graphical component of

the method. Together, these provide both a formal and informal description

of the Process Description Capture Method and the basic guidelines needed

for practical application.
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Introduction

The central way of describing what happens in the world around us, and in

particular for describing how a given or prospective system works, is to relate

a story in the form of an ordered sequence of events or activities. We call this

process description. This report is concerned with motivating and formalizing

IDEF3, a rigorous method for capturing process descriptions. In particular,

IDEF3 is designed (i) to be used by engineering and manufacturing domain

experts to express the normal content of a common sense process description,

and (ii) to be structured enough to allow for computerized representation,

automated interpretation, and intelligent support for uses of the language

in capturing process descriptions. The chief motivation for such a method

is that, before one can provide any sort Of information based application

for a user within a particular domain (manufacturing and engineering in

particular), one must have an accurate description of the user's understanding

of the structure of the domain.

Section 1 of the paper sets the stage for the reporting of our current
results. In Section 1.1 we characterize the difference between a model and

a description of a part of the world. In Section 1.2 we present some of the

phenomena present in typical process descriptions, and briefly discuss the

notion of process we will be working with. In Section 1.3 we briefly compare

IDEF3 with other process formalisms. Following these three sections we

develop IDEF3 formally; that is, we develop IDEF3 as a formal theory, with

a syntax and corresponding semantics designed to capture what we consider

to be the essential components of process description.

1 Background and Motivation

1.1 Descriptions vs. Models

It is important first to distinguish between models and descriptions (Mayer,

1988). We emphasize that, although models may well be constructed from

descriptions, our task here is not the construction of models but the formal

representation of descriptions and the information they convey.

To get at the distinction, a model can be characterized as an idealized

system of objects, properties, and relations that is designed to imitate in

l
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certain relevant respects the character of a given real world system. The

power of a model comes from its ability to simplify the real world system

it represents, and to predict certain facts about that system in virtue of

corresponding facts within the model) A model is thus in a certain sense

a complete system. For in order to be _ acceptable model of a given or

imagined real world situation, it must satisfy certain "axioms" or conditions

derived from the real world system.

A description on the other hand is a recording of facts or beliefs about the

world around us. As such descriptions are in general partial; a person giving

a description may omit facts that do not strike her as relevant, or which she

has forgotten in the course of describing the =system, etc. There are thus

no preconditions on an acceptable description, no "axioms" to be satisfied,

short of simple accuracy as far as it goes; descriptions, we might say, are

assumed to be true, but incomplete. 2 The accumulation of descriptions is

thus prior to a_d distinct from the construction of models. Indeed, generally,

the conditions one puts on acceptable modets are derived from descriptions

one receives from domain experts; they are, so to say, the data from which

models are built.

Descriptions are thus essential to the model building process. An accurate

treatment of such descriptions requires two components, one having to do

with the descriptions as linguistic entities (the syntactic component) and the

other having to do with their content, with the information they convey (the

semantic component). There muat be an effective means of representing the

descriptions themselves, a means of capturing their "logical form," a_d a

rigorous account of their information content.

On the syntactic side, as we will see, IDEF3 makes use of the standard

language of first order logic as its formal base. This permits a rich and

flexible means of expressing the logical form of most any typical descriptive

statement. Semantically, we use a variant of first-order semantics, enriched

to represent the temporal information so crucial to process descriptions. This

approach, unlike that of typical simulation languages, enables us to interpret

the intended meaning of a given descriptions in terms of a semantic structure

that corresponds in a natural way to the real world situation being described.

tSee (Corynen, 1975) for a detailed analysis of this phenomena.
2In fact one very powerful use of models is to fill in the gaps in our descriptions.
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1.2 Phenomenological and Linguistic Motivations

1.2.1 What is a Process?

To understand the idea of capturing process descriptions, one must first know

what we mean by a process. We are not using the term in a technical sense,

but in an ordinary-language sense, in keeping with IDEF3's role as a method-

ology for acquiring the intuitive knowledge of domain experts. Unfortunately,

the term "process" is quite ambiguous in English. We will need to refine our

understanding of process terminology in ordinary language before we can

characterize the intended sense of "process" more dearly.

Since we are interested in capturing a human's understanding of the the

world around him (and how it works) it is necessary to characterize the con-

cept of a process in view of that understanding. Such a characterization

is bound to be di_cult since the notion of change--a notoriously slippery

notion--is basic to the concept of process. Intuitively, the term process is

used to describe an isolable event or occurrence. As such it can be assigned a

more or less definite starting point (typically associated with the satisfaction

of certain antecedent conditions) and continue indefinitely. A process will in

general involve objects with certain (perhaps changing) properties standing

in specified (perhaps changing) relations. A process can also stand in rela-

tions with other processes: e.g., a process can start, suspend and terminate

other processes; objects or information about objects can be shared between

processes; one process can change the properties of such a shared object and

"cause" the exclusion of another process execution; etc.

It is crucially important to distinguish between process types and process

instances, or individual processes. (Indeed, as we'll see below, it is important

to distinguish generally between types and instances with regard to many

other kinds of entities as well.) We think of an individual process as a con-

crete occurrence located at a specific time mid place. Process types may be

thought of as classes of individual processes or properties that individual

processes may have. It is unfortunate that the English language does not

distinguish between process types and individual processes; the word "pro-

cess" can refer to either. In this essay, however, we wiii attempt to maintain

the distinction rigorously whenever it matters. (It does not always matter;

for instance, it does not matter in very general contexts (as above) or where

the term "process" occurs as an-int-egra-l- part of phrases like "process flow

l
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description capture" " ?5"pr£cess model.")__p_roce_ss types may vat_y_ from gen-

eral to specific. An individual process p which is among those picked out by

a process type P will be called an instance of p. If process types P and Q

are such that any instance of P is also an instance of Q, then Pojs said t9 _

be a subtype of Q. Similar terminology is used for types and individuals of

other varieties than processes.

One important note about the more general use of the term individual:

not all individuals are concrete entities. Some types, like number, may have

instances which are abstract entities; these instances are nonetheless individ-

uals. In fact, the term "individual" is really more or less synonymous with

"instance"; a thing is called an individual only with a tacit reference to some

type of which it is an instance.

1.2.2 Narrow and Broad Senses of "Process"

Another problem in describing processes in English arises from the language's

intense focus on the details of temporal succession, characteristic of the Indo-

European languages.

There is one sense of '_process" in which the word is distlnguished from

"event," "state of affairs," "eventuality," "occurrence," and any number of

other words of this general class. In fact, there are several such senses of

"process," each stressing a different kind of distinction between processes

and other things of this general kind. For instance, in one sense processes

are supposed to have internal structure, _ opposed to events , which are

pointlike. In another sense, each instance of agiven process type are supposed

to be divisible into temporal subparts which are process instances of the same

process type, whereas this would not be true for events. The linguist and

philosopher Zeno Vendler (Vendler, 1967; Vendler, 1968), among others, has

gone into great detail in classifying things of this kind, coining individual

terms for concepts represented by variations in meaning in English.

On the other hand, there is another sense of "process" in which it is

synonymous with %vent." in this sense the extensions of any of the other

terms listed in the preceding paragraph would be subsets of the class of

processes; a process is anything of the general kind described in the preceding

paragraph . It is this broades t sense of 'process , with which we are concerned

in IDEF3; the Vendlerian classification is irrelevant to our purposes. (IDEF3

has its own ways of distinguishing one kind of process from another based on
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the internal structure of the instances.) The precise technical term we have

invented for processes (in this broad sense) is unit of behavior (UOB), which

simply means a process or event, in the most general senses of those terms.

We continue to write simply "process" where we feel it will be dear that any

UOB is meant, not just a process in some narrower sense.

1.3 IDEF3 vs. Other Process Formalisms

Various disciplines have their own special perspectives on the task of describ-

ing processes. In the world of simulation, for instance, "modeling" a process

means constructing a model which can be used to simulate the process. In

the fiterature on robot planning in artificial intelligence, a plan is a kind of

process description.

Process modeling and planning, however, are only two ways in which

processes might be described. IDEF3 aims at producing high-level, general-

purpose descriptions of processes. These are [DEF3 models, not to be con-

fused with "process models" in the simulation sense. There are many pur-

poses for which IDEF3's approach is useful including:

• Determination of the impact of an organization's information resources

on the major operation scenarios of the business.

, Documentation of the decision procedures affecting the states and life

cycles of critical shared data.

• Organization of the user supplied descriptions of user operations to

assist in requirements decision making and system design.

Additionally, an IDEF3 model can be used in the early stages of defin-

ing a knowledge based system, a simulation study, a robot plan, or some

other kind of special-purpose model of a process. This use of IDEF3 as an

early, fact-gathering and organization aid can save time and reduce com-

plexity in early design. As in every design activity, it is easier to discover

how to do something once you know what you want to do. Furthermore,

because IDEF3 carries less of the technical baggage of various entrenched

disciplines than do most other process formalisms, it will be relatively easy

for a domain expert, without extensive training in any process formalism, to

use IDEF3 to communicate with designers of many different kinds of systems

m



v,

(software, simulation, shop floor machining systems, etc.). IDEF3 will thus

be a powerful tooi fof:Enow]edge acquisition. ...... =

With this background, then, we now move on to a more precise account

of IDEF3. We begin with some formal prerequisites.

2 The Syntax and Semantics of First-order

Logic

IDEF3 diagrams have a definite syntax. Furthermore, diagrams constructed

in accordance with that syntax are intended to represent certain chunks of

the world accurately and informatively; the diagrams, that is, have semantic

content. All too often the syntax of information representations of various

kinds is ill-defined, and the intended semantic content of such representations

(how they are supposed to hook up with the world) is vague and imprecise.

We attempt to avoid these problem in IDEF3 by providing an explicitly

defined syntax to make clear exactly what does and what does not count

as an IDEF3 diagram and corresponding mathematically precise semantics

to make clear exactly what sorts of structures are representable by IDEF3

diagrams.

To help us achieve this goal, we rely heavily upon the syntax and seman-

tics of first-order logic. There are several reasons for this decision. First,

first-order logic is as dearly understood as any extant scientific or mathe-

matical theory. This enables us to proceed in confidence that the most basic

theoretical foundations of our work are sound. Second, although the lan-

guage of first-order logic was originally designed to express propositions of

mathematics with clarity and precision, it soon became dear that much of

natural language could also be dearly represented in this formal language.

This is especially true for constrained fragments of natural language such as

one might find in a manufacturing, engineering, or database setting, 3 and

hence makes first-order logic a natural and effective choice for capturing the

propositional content of process descriptions in a rigorous and precise way.

Finally, fo r all its rigor, the theory of first-order logic is intuitive and rela-

3There is in particular a very large literature on the uses of logic in database design.

See, for example, (Frost, 1986), oh. 5, for a good introduction to logical database theory,
and (Gallaire and Minker, 1978) or (Jacobs, 1982) for more detailed treatments.
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tively simple to understand. The language is a straightforward idealization

of ordinary discourse, and its semantics, or model theory, provides especially

natural mathematical representations of the phenomena to be modelled.

Since we are assuming no familiarity with first-order logic, this section of

our paper will cover enough of the basic theory to enable one to follow the

exposition of the foundations of IDEF3 to follow. Some knowledge of basic

set theory will be presupposed.

2.1 First-order Languages

First-order logic is expressed in a first-order language. Such a language £

is a formal language. That is, it is a formal object consisting of a fixed

set of basic symbols, often called the vocabulary of £, and a precise set of

syntactic rules, its grammar, for building up the sentences, or formulas, of

the language, those syntactic objects that are capable of bearing information.

2.1.1 Vocabulary

The basic vocabulary of a first order language consists of several Ends of

symbols: 4

• Constants

• Variables

• Predicates

• Logical symbols.

Constants are symbols that correspond to names in ordinary language.

For many purposes, it is useful to use abbreviations of names straight out of

ordinary language for constants, e.g., j for John, wp for Wright-Patterson,

v for Venus, e for Elevator 1, etc. When we are describing languages in

general and have no specific application in mind, we will simply use the letters

a, b, c, and d, perhaps with subscripts; we will assume that we will add no

4We omit function symbols for purposes here, though they would be present in a com-
plete account of the theory.

10

I



more than fmite!y many subscripted constants t0 our :language 2 Constants

are usually lower case letters, with or without subscripts, but this is not

necessary. Indeed, it is often useful to use upper case.

We will often want to say things about_ _ %rb!tra.ry,' constant as a way
of talking about all constants, much as one might talk about an arbitrary

triangle ABC in geometry as a way of proving something about all triangles

in general. For this purpose it will not do to talk specifically about a given

constant, a say, _nce we want what we say to apply to all constants. This

requires that, when we are talking about our language, that we use special

metavariables whose roles are to serve as placeholders for arbitrary constants

of our language, much as ABC above serves as a placeholder for arbitrary

triangles. Thus, metavariables are not themselves part of our first-order

language £, but rather part of the extended English we are using to talk

about the constants that are in the language. We will use lower case sans

serif characters a, b, c for this purpose.

Next on the list are the variables, whose purpose will be darified in detail

below. The lower case letters z, y, and z, possibly with subscripts, will play

this role, and we will suppose there to be an unlimited store of them. We

will use the characters x, y and z as metavariables over the store of variables

in our language.

The third group of symbols in our language consists of n-place predicates,

n > 1. One-place predicates correspond roughly to verb phrases like "has

insomnia," "is an employee," "is activated," and so forth, all of which express

properties. Two-place predicates correspond roughly to transitive verbs like

"begat," "is an element of," "weighs less than," "enters," and "lifts," and

these express two-place relations between things. There are also three-place

relations, such as those expressed by "gives" and "between," and with a

little work we could come up with relations of more than three places, but

in practice vre have little cause to go much beyond this.

When speaking generally, for predicates we will use upper case letters such

as P, Q, and R. Occasionally these may appear with numerical superscripts

to indicate the number of places of:the relation they represent, and if neces-

sary with subscripts to distinguis h between those with the same superscripts.

tThe restriction to a finite number of constants here is not at all essential, but constraint
languages in general will use only finitely many; the same holds for predicates and function
names below.
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Once again, though, in practice it is often useful to abbreviate relevant nat-

ural language expressions. Most languages contain a distinguished predicate

for the two-place relation "is identical to." We will use the symbol _ for this

purpose. Once again, the corresponding sans serif characters P, Q, R etc.

will serve as metavariables.

The last group of symbols consists of the basic logical symbols: --, A, V,

D, and =, about which we shall have more to say shortly. (For ease of

exposition here we will omit quantifiers, though these would be present in

a thorough treatment.) We will also need parentheses and perhaps other

grouping indicators to prevent ambiguity.

2.1.2 Grammar

Now that we have our basic symbols, we need to know how to combine them

into grammatical expressions, or well-formed formulas, which are the formal

correlates of sentences. These will be the expressions that will encode the

propositional content of process descriptions in our theory (and more). This

is done recursively as follows, s

First, we want to group all name-like objects into a single category known

as terms. This group includes the constants of course, and for reasons dis-

cussed below, it includes the variables as well,

Next we define the basic formulas of our language. Just as verb phrases

and transitive verbs in ordinary language combine with names to form sen-

tences, so in our formal language predicates combine with terms to form

formulas. Specifically, if P is any n-place predicate, and tl,... ,t,_ are any

n terms, then Ptl... t,, is a formula, and in particular an atomic formula.

To illustrate this, if H abbreviates the verb phrase "is happy," and a the

name "Annie," then the formula Ha expresses the proposition that Annie

is happy. Again, if L abbreviates the verb "loves," b the name "Barbara,"

c the name "Charlie," then the formula Lbc expresses the proposition that

Barbara loves Charlie. We will use the lower case Greek letters ¢, _b, and 0

as metavariables over formulas.

Often when one is using more elaborate predicates drawn from natural

language, e.g., if we had used LIFTS instead of L in the previous example, it

is more readable to use parentheses around the terms in atomic formulas that

swe will say a little more about reeursive definitions below.

m

i
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use the predicate and _parate them by commas, e.g., LIFTS(b,x ) instead

of LIFTSbz. Thus, more generally, any atomic formula Pt]... t,, can be

written also as P(tl,... ,t,,). Furthermore, atomic formulas involving some

familiar two-place predicates like _, and a few others that will be introduced

below, are more often written using in.fix rather than prefix notation, i.e.,

with the predicate between the two terms rather than to the left of them.

For example, we usually express that a is identical to b by writing a -_ b

rather than _ab. Thus, we stipulate that formulas of the form Ptt' can also

be written as tPt'.

Now we begin introducing the logical symbols that allow us to build up

more complex formulas. The symbol -_ expresses negation; i.e., it stands

for the phrase 'It is not the case that'. Since we can negate any declarative

sentence by attaching this phrase onto the front of it, we have the corre-

sponding rule in our formal grammar that ff _o is any formula, then so is -'to.

The symbols A, V, D, and __ stand roughly for "and," "or," "if...then," and

"if and only if," which are also (among other things) operators that form

new sentences out of old in the obvious ways. Unlike negation, though, each

takes two sentences and forms a new sentence from them. Thus, we have

the corresponding rule that if _ and ¢ are azay two formulas of our language,

then so are (V A _b), (_ V ¢), (_0 D ¢),-and (_o _ ¢). So, to illustrate once

again, using the abbreviations above, (Lob D (Hb A _Ha)) expresses that if

Charlie loves Barbara, then Barbara is happy and Annie is not.

Finally, we turn to the quantifiers 3 and V. Recall that we introduced

variables without explanation above. 3 and V stand for "some" and "ev-

ery," respectively3 one central task of the varja_bles is to enable them to play

this role in our formal language. (They shali h-ave -another(crucial role to

play in IDEF3, as we will see.) Consider the differen_ between "Annie is

happy,' 7 "Some individual i_s _happy/'; an_-"Every individual is _-appy." In

the first case, a specific individual is Picked out by the name "Annie" and

the property of being happy is predicated of her. In the second, all that is

stated is that some unspecified individual or other has this property. And in

the third, itfi stated that every individual: whether Specifiab|e Or not, has

this property. This lack of specificity in the latter two cases can be made

explicit by rephrasing them like this: for some (resp., every) individual z,
z is happy. Since the rule for building atomic formulas counted variables

arnong the terms, we have the means for representing these paraphrases. Let

H abbreviate "is happy" once again; then we can represent the paraphrases
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as 3zHz and VxHx respectively.

Accordingly, we add the final rule to our grammar: if _ is any formula of

our language and x is any variable, then _ and Vx_o are formulas as well.

In such a case we say that the variable z is bound by the quantifier 9 (resp.,

V), and we say that the formula _o is the scope of the quantifer V in Vx_o, and

it is the scope of the quantifier 9 in _x_.

2.2 First-order Semantics: Structures

We have motivated the construction of our grammar by referring to the

intended meanings of the logical symbols and by letting our constants and

variables abbreviate meaningful expressions out of ordinary language. But

from a purely formal point of view, all we have in a language is uninterpreted

syntax; we have not described in any formal way how to assign meaning to

the elements of a first-order language. We will do so now.

A structure for a first-order language £ consists simply of two elements:

a set 19 called the domain of the structure, and a function V known as an

interpretation function for £. D is the set of things one is describing with

the resources of £, e.g., the natural numbers, major league basebal.1 teams,

objects flowing through k manufacturing system, the people and objects that

make up an air force base, or the records inside a database. The purpose

of V is to fix the meanings of the basic elements of E--in our present case,

constants and predicates--in terms of objects in or constructed from D.

2.2.1 Interpretations for Constants and Predicates

Constants Variables will not receive a specific interpretation, since their

meanings can vary within a structure (they are variables after all). They will

be treated with their own special, but related, semantic apparatus below.

Constants, being the formal analogues of names with fixed meanings, axe

assigned members of 19 once and for all as their interpretation; in symbols,

for all constants c of £, V(c) E 19.

Predicates For any one-place predicate P, we let V(P) be a subset of 19-

the set of things that have the property expressed by P. And for any n-place

predicate R, n > 1, we let V(R) be a set of n-tuples of dements of 19-

the set of n-tuples of objects in 19 that stand in the relation expressed by

14
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R. For example, if we want 'L' to abbreviate the verb "loves," then if our

domain D consists of the population of Texas, then V(L) will be the set of

all pairs (a,b) such that a loves b. Formally, then, for all n-place predicates

P, V(P) C_ T_, where Tr' is the set of all n-tuples of elements of D.

If one wishes to include the identity predicate _ in one's language, and

have it carry its intended meaning, then one needs an additional, more spe-

cific semantical constraint on the interpretation function V. Identity, of

course, is a relation that holds between any object and itself, but not between

itself and any other object. This additional constraint is easy to express for-

mally: if our language £ contains _, then the interpretation of _ is the set of

all pairs (o, o) such that o is an element of the domain :D, i.e., more formally,

= {(o,o) Io e V}.

2.2.2 Truth under an Assignment

Our goal now is to define what it is for a formula to be true in a given a

structure M = IT), V). To do so, we will first need the notion of a variable

assignment, or assignment for short. An assignment might be thought of

as a "temporary" interpretation function for variables: like an interpreta-

tion function on constants, it assigns members of the domain to variables;
but within the same structure we make use of many different assignment

functions. This reflects the semantic variability of variables as opposed to

constants and predicates. Now, given our structure M and an assignment a,

we can define interpretations for terms, i.e., constants and variables gener-

ally, relative to a: the interpretation Vn(t) of a term t under an assignment

a is just Y(t), if t is a term, and c_(t)--the object in D assigned to t by a--if

t is a variable.

Atomic Formulas Given a general notion of an interpretation for terms

under an assignment a, we can now define the notion of truth under an

assignment in a structure M. Truth simpliciter in M will then be defined

in terms of this notion. For convenience, we will often speak of a formula's

being "true= in M" instead of being "true in M under a."

We start by defining truth under an assignment for atomic formulas. So

let _o be an atomic formula Ptl...t,. Then _ is true= in M just in case

(V=(tl),...,_=(t,,)) E I'_(P). Intuitively, then, where n = 1, Pt is true,, in

M just in case the object in/:) that t denotes is in the set of things that have

15

mm
l
m

g

R

I
B

m

m
m

e

R

m
w

mm

V

Ul

m

I

m

m

m

m

B

m

!

m

m

|

J



1,,7_

the property expressed by P. And for n > 1, Ptl... _ is true_, just in case

the n-tuple of objects (ol,... ,o,_) denoted by h,... ,t,, respectively is in the

set of n-tuples whose members stand in the relation expressed by P, i.e., just

in case those objects stand in that relation.

To help fix these ideas, let us actually construct a small language £* and

build a small structure M*. Suppose we have four names a, b, c, d, a one-

place predicate H (intuitively, to abbreviate "is happy"), and a three-place

predicate T (intuitively, to abbreviate "is talking to ... about"). Let us also

include the distinguished predicate ._, though we will make no real use of it

until later. We will use z, Y, and z for our variables.

For our structure M*, we will take our domain _D to be a set of three

individuals, {Beth, Charhe, Di}, and our interpretation function {_ will be

defined as follows. For our constants, _(a) = _(b) = Beth, _(c) = Charlie,

and {_(d) = Di. (Beth thus has two names in our language; this is to illustrate

a point to be made several sections hence.) For our predicates H and T,

we let _(H) = {Beth, Di} (so, intuitively, Beth and Di are happy), and

_(T) = {(Beth, Di, Charlie),(Charlie, Charlie, Di)} (so, intuitively, Beth

is talking to Di about Charlie, and Charlie is talking to himself about Di).

Following the rule for _, we let _(_) = {(Beth, Beth), (Charlie, Charlie), (Di,

Di)}. Finally, for our assignment function a, we let a(z) = re(Y) = Charlie,

and c_(z) = Di.
Let us now check that Hd and Tbdz are true in M* under a. In the first

case, by the above, .Hd is true,, in M* just in case _',(d) E {_,,(H), i.e., just

in case Di is an element of the set {Beth, Di}, which she is. So Hd is true',

in M*. Similarly, Tbdz is true', in M* just in case (_',(b),_',(d),{_,(z)) E

_',(T), i.e., just in case (_(b),{_(d),et(z)) C {_(T), i.e., just in case (Beth, Di,

Charlie) E {(Beth, Di, Charlie), (Charlie, Charlie, Di)}. Since this obviously

holds, the formula Tbdz is true,, in M*.

A formula is falsea in a structure M, of course, just in case it is not true',

in M. It is easy to verify that, for example, Hc, Hz, and Tdbc are all false',

in M* under c_.

Digression on Variables, Types, and Instances We emphasized above

the disinction between types and instances, it is important to see how this

distinction is captured to a certain extent by the apparatus of variables and

assignments. Though we have no specific semantic object corresponding to
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types, intuitively formulas with unassigned variables can b e thought of=
expressing types of situations, z For example, the formula Ht, independent

of any assignment, can be thought of as expressing the type of situation in

which someone or other is happy; when that variable is assigned, or anchored,

to a given individual, Charlie say, then we get a cleterminate instance of that

situation type. Again, Tzcw can be thought to express the type of situation

in which someone is talking to Charlie about someone, an assignment of some

object, Beth say, to z yields the somewhat more determinate situation type

in which Beth is talking to Charlie about someone or other, and a further

assignment of an object to w then yields a deter_nate instance of the latter

two types.

This reflection of the type/instance distinction in the assigned/unassigned

variable distinction plays a crucial role in representing the process-type/pro-

cess-instance distinction in IDEF3. We will have more to say about this

presently.

Conjunctions, Negations, etc. Now for the more complex cases. Sup-

pose first that ¢ is a formula of the form 4¢. Then _ is true,, in a structure

M just in case ¢ is not true,, in M. In so defining truth for negated formulas

we ensure that the symbol - means what we have intended. Things are much

the same for the other symb_s. Thus, suppose _ is a formula of the form

_b A 8. Then _ is true', in M just! n case both ¢ and 0 are..... If _ is a formula

of the form ¢ v 0, then _ is true', in M just in case either ¢ or 0 is. If _ is a

formula of the form ¢ D 0, then ¢ is true_, in M just in case either ¢ is false

in M or 0 is true_, in M. And if ._ is a formula of the form ¢ --- 0, then ¢ is

true,, in M just in case ¢ and 0 have the same truth value in M.

The reader should test his or her comprehension of these rules by verifying

that _H(y) and (Tbcz A Tzzc) _ Hc are both true in M* under a.

Quantified Formulas Last, we turn to quantified formulas. (This section

can be omitted without impairing the reader's understanding, since our ex-

amples below do not involve quantified statements.) The intuitive idea is

this. When we iniroduced the quantifiers above, we noted that "Some in-

CThe notion of a situation is at the heart of much recent work in natural language se-

mantics, philosophy, logic, and artitlcal intelligence, especially _round Stanford University.

See esp. (Barwise and Perry, 1983) and (Barwise, 1989) in this regard.
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dividual is happy," i.e., 3zHz, can be paraphrased as "for some individual

z, z is happy." This in turn might be parapharased more linguistically as

"for some value of the variable z, the expression 'z is happy' is true." This

is essentially what our formal semantics for existentially quantified formulas

will come to. That is, 3zHz will be true in a structure M under a just in

case the unquantified formula Hz is true in M under some (in general, new)

assignment or' such that a'(z) is in the interpretation of H. It is easy to

verify that this formula is true in our little structure M* under a, when we

look at a new assignment function a' that assigns either Beth or Di to the

variable z. Thus, 3zHz should come out true in M* under a.

But we have to be a little more careful in defining truth in a structure

formally, because some formulas--Tbzz, for example--contain more than one

unquantified, or free, variable. Thus, when we are evaluating a quantification

of such a formula--3zTbzz, say--we have to be sure that the new assignment

function a' doesn't change the value of any of the free variables--in this case,

the variable z. Otherwise we could change the sense of the unquantified

formula in mid-evaIuation. So, intuitively, under the assignment a above,

3zTbxz intuitively says that Beth is talking to Charlie about someone (recall

that a(z) = Charlie), and this should turn out to be false,, in M* since Beth

is not talking to Charlie about anyone, i.e., there is no triple in .T(T) such

that Beth is the first element and :Charlie the second. But suppose all we

require to make an existentially quantified formula true under a is that there

be some new assignment function a' such that Tbzz is true under a'. Then

it could turn out also that a'(z) is Di and a'(z) is Charlie. But then the

formula Tbzz would be true in M* under a', since Beth is talking to Di about

Charlie, i.e., (Beth, Di, Charlie) E _,,(T). And that is dearly not what we

want.

All that is needed to avoid this problem is a simple and obvious restric-

tion: when evaluating the formula 3zTbzz, the new assignment a' that we

use to evaluate Tbzz must not be_lowed to differ from ct on any variable

except z (and even then it needn't differ from a). More generally: if _o is an

existentially quantified formula 3x_, then _, is true in a structure M under

ot just in case there is an assignment function ct' just like a except perhaps

in what it assigns to x such that the formula _b is true in M under a'. And if

is a universally quantified formula Vx_b, then _ is true in M under a just

in case for every assignment function a' just like a except perhaps in what

it assigns to x the formula _b is true in M under a'. That is, in essence, _, is
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true in M under ¢x just h cas e _ is true in M no matter what value in the

dOmain we assign to X (while keeping all other variable _s]g_nments fixed).

The reader can once again test his or her comprehension by showing in

detail that 3zTzby is false,, in M*, and that Vz(Hz V Tbdz) is true_, in M*.

2.2.3 Truth and Realization

Now, finally, we can define a formula to be _ue in a structure M simpliciter

just in case it is true_ in M for all assignments c_, and false in M just in

case it is false,_ in M for all a. Note that for most any interpretation, there

will be formulas that are neither true nor false in the interpretation. Our

example 3zTbzz above, for instance, is neither true nor false in M*. Such

formulas will of course always have free variables, sinceit is the semantic=in-

determinacy of such variables that is responsible for this fact. However, note

that some formulas with free variables--e.g., Hz A-,Hz--will nonetheless be

true or false in certain models, though these will typically be logical truths

(resp., falsehoods), i.e., formulas which are not capable of true (resp., false)

interpretation.

A structure M is said to be a realization of a given set _ of formulas just

in case every formula in _ is true in M. s So, for example, our structure M* is

a realization of the set {HJ, Hz _ Hz, Tbdc A -, tic, Vz(Hz V 3y(Tydz))}.

The notions of truth and realization will be central to our semantics for

IDEF3.

2.3 Temporality and index Semantics

2.3.i First-order Logic and the Problem 0f Temporality

Despite its success in numerous domains, there are areas of potential appli-

cation where plain _-anilla first-order logic and its semantics comes up short.

Most notable among these axe domains involving time. Astandard first-

order structure "freezes" the world as it were at a certain moment, and this

seriously hinders the representation of dynamic processes. For our purposes,

sit is more common in logic to say that such a structure is a model of _. But this

term is already so overextended in the area of information modeling (case in point) that
we thought it best to avoid the standard terminology here.
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then, first-order logic needs some supplementation. The answer, or at least

one good answer, is indez semantics.

Roughly speaking, index semantics is simply an expanded first-order se-

mantics. That is, instead of a single interpretation, in an index semantical

structure one finds many plain interpretations, each distinguished from the

other (in addition to internal differences) by a unique index. The idea then,

in the temporal case, is that each index can represent a certain moment, or

a certain interval, of time, and the structure it indexes represents the world

at that moment or during that interval. 9 In effect, one overcomes the static

representation of a single first-order interpretation by stringing together a se-

ries of related snapshots. The result, though somewhat artificial, nonetheless

adds great expressive power and flexibility to unadorned first-order languages

and their semantics.

2.3.2 Elaborations

We now introduce extensions to our language and our semantics appropriate

to the task at hand. To our language We_add a new class of temporal constants

kl, k2,. • • and temporal variables il, i2,. •., and a distinguished dass of _t-place

temporal predicates. The temporal constants will serve as names of intervals,

e.g., 12 noon (on a particular day), 9-12 a.m., etc. Temporal variables will

of course take temporal intervals as values, and the predicates intuitively

express properties of, and relations among, intervals, e.g., duration properties

like five minutes in length, and significant temporal relations (precedence and

inclusion in particular).
Temporal terms and predicates will not be allowed in formulas of our

original language. Rather, they are the elements of a separate, and for pur-

poses here, simpler temporal language whose only logical symbols are the

boolean connectives (and hence there are no temporal quantifiers). The re-

sulting formulas will be called temporal formulas, and formulas from our

original language standard formulas. Formulas of both sorts will be used

9Though there were several precursors to full-blown index semantics, most notably the
work of Prior (Prior, 1957), it reached its maturity in the "possible world" semantics
that Saul Kripke provided for modal languages, i.e., languages with such operators as
"necessarily," "possibly," 'fit has always been the case that," 'It will be the case that,"
etc. See (Kripke, 1963) for a readable overview, (Chellas, 1980) and (Hughes and Cresswell,

1968) for more formal developments.
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in the construction of a new kind of expression that we call an elaboration,

consisting of a' temporal interval variabie,_temporal formulas involving that

variable, and a collection of nontemporal formulas. More specifically, let i

be a temporal interval variable, _1,... ,_b, (n > 0) 1° temporal formulas, and

_o,,... ,90,_ (m > 0) axe standard formulas, [i, {_bl,... ,_b,,}, {_1,... ,qo,,}] is

an elaboration) 1 i will be called the dominant temporal variable of the elab-

oration. :_

To anticipate things a bit, the temporal formulas in an elaboration put

conditions on the value of the temporal variable i, e.g., that it be before

noon, or have a duration of twenty minutes. Subject to these conditions,

the elaboration is to be thought of as "asserting" that each of its st.andard

formulas is true throughout the value of i. An elaboration thus represents

(at a certain level of detail) what is occurring within a particular temporally

extended sltuation--type or instance, depending on whether or not there axe

free variables occurring in the elaboration. An instance of a process, then,

thought of roughly as a sequence of actual events, can be represented by

a corresponding sequence of "determinate" elaborations--elaborations con-

raining no free variables. A general process description will be represented

by a structured duster of "indeterminate" daboratlons--elaborations with

free variables among the formulas--that can be instantiated in many differ-

ent ways, corresponding to the different possible runs of the general process

captured in the description. The graphical syntax of these clusters will be
described below.

2.3.3 Temporal Structures

To be able to represent these ideas semantically, we add temporal indices

to our plain structures.. Specifically, a temporal structure (D, TI, dom_V)

consists now not only of a domain D and an interpretation function V, but

two other elements as well. First, there is a set of temporal intervals, or

more exactly, a triple TI = (T,<,E_), where T is a set, and < and E_ are

two binary relations on T--intuitively, < represents the relation of temporal

t°So in the case where n = 0, the sequence _kt,.-. ,lk,, is the empty sequence.

tithe restriction to temporal variables i is not a genuine restriction, since for any tem-

poral constant k we can include the condition i = k among the formulas _b_, thus in effect
diminating the restriction. Using only variables in the definition, however, makes for a

smoother statement of the semantics for instan_iation graphs below.
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precedence (last Tuesday precedes last Thursday), and E_ the relation of

temporal inclusion (today's lunch hour is included in the period from 8:00

this morning to 5:00 this evening). Familiar temporal properties and relations

can be defined in terms of these notions. For example, an atomic interval

can be defined as an interval that includes no intervals but itself.

We will impose certain further conditions on the temporal structure of our

intervals. In particular, we will assume that every interval has a beginning

(and ending) point. This can be stated in the above terms as the condition

that every interval r includes an interval that precedes (is preceded by) every

other interval included in r. Under this condition we can say that one interval

r meets another r' just in case the ending point of r is the beginning point

of r'.

In most real world settings, not every object exists across every temporal

interval. In life, people die, others are born'; in a manufacturing system, new

objects are constructed, others leave the system; in a database, new records

are added, old ones deleted; and so on. Thus, we want to have the flexibility

to have different domains of objects associated with different intervals of time;

more exactly, we want the plain structures indexed by different intervals to

be able to have different domains: Tha_ is the job of the second element dora

in temporal structures. Specifically, in a temporal structure (D, TI, dora,V),

D is to be thought of as the set of all the objects that exist in any of the

temporal intervals represented by TI (that is, all the objects that exist in

any temporal interval in the real world setting that the structure is designed

to represent), dora then assigns to :_ch interval in TI the set of objects that

exist in that interval--that is, intut]veiy, the objects that exist (at least)

from the beginning of the interval to the end and at every point in betweeen.

The same object, of course, might, and generally will, exist in many different

temporal intervals. Thus, if we were modelling the ruff 'of a manufacturing

system over a twenty-four hour period, D would consist of all the objects that

occur in the system during any interval within that period--parts, employees

on their various shifts, finished jobs from the time of their completion to the

time they leave the system, etc.

Just as we place conditions on < and E_ to ensure that they capture

the properties of temporal intervals that we wish to represent, we must also

place a similar condition on dora. Specifically, if an object exists throughout a

certain interval of time, then it exists throughout every subinterval. However,

nothing we have said so far about our formal structures proper guarantees
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that dora will represent this fact, i.e., that it will assign all the objects in a

given interval r also to every subinterval of r. We guarantee this with the

following condition, stated explicitly in terms of our semantical apparatus:

for any interval r E T, and for arty object o E D, if o E dora(r), then for

any r' E T, if r' E_E_r, then o E dom(r'). We don't require the converse, of

course, since an object could come to exist during a subinterval r' of r that

does not exist throughout all of the larger interval r. :

The interpretation function V in a temporal structure needs to be revised

slightly also. One of the most salient features of temporal processes is that

things change over time. This has generated a venerable philosophical prob-

lem: how can an object be different at one time than at another and still

be the very same object.? Greek, medieval, and some contemporary philoso-

phers put things in terms of substance and _cident: the same substance

can nonetheless alter those accidental properties that_kre n0t essential to its

being that very substance. For example, Quayle's height is not essential to

him, and hence it can change over time without Quayle ceasing to be Quayle.

The same cannot be said of Quayle's being a human being. That property

is essential to him; he couldn't come to be a stone, an alligator, a daisy, or

otherwise come to lack it and still be Quayle. 12

However we want to view the metaphysics of change, though, it is undeni-

able that our ordinary conceptual scheme--as reflected in the sort of ordinary

language reports whose content IDEF3 is intended to capture--permits one

and the same object to have different properties over time. We implement

this in our formal semantics by relativizing the interpretation of predicates

to intervals. Specifically, for a given n-place predicate P, and any interval

r E T, we let V(P,r) be a subset of D. In this way, an object o E D

might be in the interpretation of P during one interval r, i.e., we might have

o E dora(r) and o E V(P,r), and not be in the interpretation of P during

another interval r', i.e., we might also have o E dom(r') and o _ V(P,r').

We do not require, analogous to the condition on dora above, that if an

object has a property over a given interval, then it has that property over

every subinterval. For while this is true of many properties, e.g., running, it

is not true of a_. Obvious cases are ones that involve some sort of average

1_The concepts of substance, essence, and accident have in recent years generated a
voluminous literature, much of it spawned by Krlpke's formal work in the semantics of
modal logic. For a good introduction to the issues, see (Schwartz, 1977.)
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measurement, e.g., a manufacturing system over a given twenty-four hour

period might have the (average) property of putting out fifty-two jobs per

hour, while it might be that in no single hour subinterval of that period

were there actually exactly fifty-two jobs put out. It thus has to be added

specifically for each predicate in an IDEF3 representation whether or not its

interpretation at a given interval T is to be nested within each subinterval of

T.

We also do not require that the interpretation of a predicate at an interval

contain only objects that "exist" at that interval. This is because there are

many meaningful predicates that seem to contain objects that no longer

exist. For example, Lincoln is in the extension of the predicate 'FORMER

PRESIDENT'. Or suppose that in the course of constructing a given widget

W one needs first to use a certain gadget G that is destroyed in the process

before W is complete. After its construction, however, at a certain time r

one might want to be able to hst which parts played a role in the construction

of W, and hence one might want some sort of predicate 'PART USED IN

CONSTRUCTION OF W' that is true at r of G, even though G no longer

exists at r, i.e., G ¢ dom(r'). Of course, for certain purposes one might for

one reason or another wish to enforce the condition that the interpretation

of a predicate at an interval only take objects that exist during that interval,

and such a condition could of course be added unproblematically, but for

greater generality we omit it.

Interpretations for constants are given just as before: for any constant

c, V(c) C D. Assignment functions also work as before, assigning arbitrary

objects in D to free object variables, and arbitrary intervals in TI to free

temporal variables.

2.3.4 Truth and Realization in Temporal Structures

Atomic Formulas and Connectives Truth in temporal structures is now

just a simple extension of truth in ordinary first-order structures. Specifically,

let I be a temporal structure (D, TI, dom,V), and a an assignment for I.

Then we define truth= just as before, only relative to our interval indices:

in the simplest case, an atomic formula Pc is true° in I relative to r just

in case the object that ¢ denotes, i.e., V(¢), is in the set V(P,r) of things

that have the property expressed by P at the interval 7"; if instead we have

a variable × instead of ¢, then we look instead at c_(x). Similarly for atomic

=

==--
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formulas constructed from n-place predicates. Connectives work as before,

modulo the relativization to intervals.

Quantified Formulas Quantifiers present two options. (Again, discussion

of quantifiers can be omitted without impairing the reader's comprehension

of anything that follows.) On the one hand, given a quantified sentence 3x_,

we can interpret the quantifier as ranging over all objects in the domain D

independent of the interval r at which we are evaluating the formula, or we

can relativize them to those objects in the domain of r. Since the former

is more general, 13 we will restrict our attention to it. Thus, 3x_k is trues at

r just in case there is some object o C D and assignment function a: that

differs from c_ at most in that it assigns o to x, such that _ is true,,,. That

is, in essence, 3x_b is true,, in M at r just in case _k is true_ in M for some

value in the domain D of all objects that ct' assigns to x (while keeping all

other variable assignments fixed). Similarly, Vx_k is true,, in M at r just in

case lk is true in M for all wiues in D that we assign to × (while keeping all

other variable assignments fixed).

2.3.5 Truth and Realization

As before, truth for a formula _ at an interval r in an interpretation I is just

for _ to be true= at r for all assignments a. Otherwise put, for a formula to

be true at an interval in an interpretation is for it to hold during that interval

no matter what values of the domain are assigned to the free variables of the

formula.

Given all this we can define a notion analogous to truth at an interval for

elaborations. Specifically, we say that an assignment a realizes an elaboration

E = [i,{_l,...,_km},{_ol,...,_,,}] in I just in case each _k_ and each _j is

truer, at a(i). 14

tSIn particular, one can achieve the effect of quaniification_jUst over the_0bjects that

exist at the index at which one is evaluating the formula in question simply by introducing

a distinguished predicate E! whose extension at r is always just the set of objects that

exist at _', i.e., V_E!, *') = dora(*'), for any ,-.
t4 In a wmewhat fuller development we would add a second type of daboration that

requires only that the formulas _, be true at some sttbintervM of r. This enables one to
capture descriptions that are less than precise about what e.zactlv goes on during some

period of time.
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As it happens, in IDEF3, the notion of an assignment realizing an elabora-

tion will play a much more prominent role than the notion of an elaboration

simply being realized, and hence the notion of truth under an assignment

will play a more prominent role than straight truth. The reason for this is

that, first, different variable assignments for the same elaboration provide a

natural representation of the idea of different objects instantiating the same

process across time, and second, assignment of the same object to the same

variable across different elaborations provide a natural representation of the

flow of a given object through a process. These are the chief ideas for which

IDEF3 is intended to be a flexible and powerful representation tool.

3 IDEF3 Graphical Syntax

3.1 Prediagrams and Their Grammar

We now turn to the more explicit development of IDEF3 proper. In addition

to the (supplemented) first-order component already noted, the syntax of

IDEF3 also has a graphical component, used for constructing figures that are

vivid and especially useful for real world applications. There are several types

of basic elements of the graphical syntax for IDEF3: bores, labels, arrows,

and junction symbols. With the exception of junction symbols, of which there

are two, & and X, there is an inexhaustible (i.e., countably infinite) supply of

elements of each type. Boxes and labels join to form labeled bores, or I-bores,

and boxes and junction symbols join to form junctions--&-junctions and X-

junctions respectively. Is The preferred two dimensional (2-d) representations

of these constructs are depicted in Figure 1.

Both labeled boxes and junctions are called nodes. Nodes are joined with

other nodes to form what we call prediagrams. The joining of one node a

to another a _ by an arrow r can be represented as a triple (a,r,a_). r is

called an outgoing arrow of a, and an incoming arrow of a'. The natural

way to represent (a,r,a') two dimensionally is to simply to draw the 2-d

representation of r from the 2-d representation of a to the 2-d representation

a'. Henceforth, we will often not distinguish between graphical elements of

1sin practice, labels serve as concise abbreviations or descriptions of the state of affairs

described by an elaboration associated with the box in a graphical diagram. For formal
purposes we simply use lower case letters with subscripts; much more on this below.
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IDEF3 syntax and their 2-d representations, and we will often speak infor-

mally, e.g., of "drawing" an arrow from one node to another, of two nodes

being "connected" by an arrow, of "connecting" an arrow to a node, etc. In

particular, our rules below for constructing diagrams--mathematically, these

are graphs of a certain sort--will be stated in these more informal (but no

less rigorous) terms.

Not all ways of drawing arrows between nodes are legitimate prediagrams.

Indeed, most ways of doing so are not. Most yield diagrams which are seman-

tically unwieldy at best, and incoherent at worst. We impose order on the

construction box and arrow figures out of our graphical syntactic dements

by means of the following recursive definition of notion of a prediagram, i.e.,

a definition that begins with basic instances of the notion, and then proceeds

to define more complex instances in terms of less complex. We will state the

syntactic rules first; detailed explanation of each rule follows.

o

2.

3.

4.

.

For n > 2, the result of drawing n arrows from an &:-junction (resp.,

X-junction) to n distinct l-boxes is called an basic open &-split (resp.,

basic open X-split. (See Figure 2.)

The result of drawing an arrow from all the 1-boxes in a basic open &-

split (resp., basic open X-split) to a single &-junction is a closed _-split

(resp., closed X-split).• (See Figure 2.)

1-boxes, open and dosed splits (basic or not) are prediagrams.

The l-boxes and junctions of a prediagram are called its nodes. A node

in a prediagram with no outgoing arrows is called eztensible.

A path in a prediagram is a sequence (al,... ,a,,) of nodes such that

for i < n, there is an arrow from ai to a_+l. We say in this case that

(al,...,a,,) is a path from al to a,. Sequences with a single element

are to be considered limiting cases of paths. A node a' in a prediagram

7r is accessible from a node a of 7r iff (i.e., if and only if) there is a path

from a to a'. A path p is said to traverse a node a i_ffa is an element

of p. a and a' are basically incomparable iff either (i) there is no path

from a to a' or from a' to a, or (ii) there is a junction j such that both

a and a' are accessible from j but every path from one to the other
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traverses j.ls a is essentially accessible from a' iff a is accessible from

a' and a and a' are not basically incomparable:

° A node p in a prediagram r is a leftmost point, or L-point, of rr ill" every

node of lr is accessible from p. p is a vi#htmost point, or R-point, of rr

iff p is accessible from every node of _'. r is L-pointed if it has a unique

L-point, R-pointed if it has a unique R-point, and _clo_sed if it is both

L-pointed and R-pointed_ _

7. The result ofreplacin _ any 1-boxb in a dosed sprit (of either sort ) with

a dosed prediagram r by attaching the arrows coming into b to the

L-point of r and the arrow coming out of b to the R-point of rr is a

closed split. It follows from this rule that every closed sprit is dosed in

the above sense. The:area _etween the L-p0]n_d':R:p0int of a dosed

split S is called the scope of S. If a is the L-point of S and b the R-point,

then b is said to be a's R:cou_n)erpart, arid a b's L-counte_art.

8. The result of drawing an arrow from an extensible node of a prediagram

F to the L-point of another prediagram is itself a prediagram.

9. The result of drawing an arrow from an extensible node a of a predia-

gram rr to any node a' of rr is itself a prediagram iff (i) a is essentially

accessible from a', (ii) no part of-the arrow is within the scope of a

closed split, and (iii) a' is neither the L-point of r nor the R-point of a

closed split within r.

Further discussion of these rules will help make their function dear. As

noted, the above definition is recursive in that it begins by introducing the
basic cases of certain notions (prediagram, dosed sprit) and then uses further

rules to extend the notions once we have the basic cases. (1) and (2) give

us some further initial dements to help get things started. Open &-splits

represent processes (both types and instances) that diverge into several dis-

tinct subprocesses, and open X-splits represent process types that have a

"condqt_onai branch," i.e:,a poin{_where :the process can _flow one and only

l_The second condition here actually includes the first as a v_cuous case, but this way
of putting it makes the idea a bit dearer. Note that paths between basically incomparable
nodes will be made possible only by (9) below, which provides for the construction of
cycleswithin diagrams.
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one of several ways. Such splits are obviously central to the description of

indeterminate cycles within process types. A process instance generally flows

one way rather than another at a branching point depending on whether or

not some condition is met. If it is not, the process instance loops back to

an earlier point in the process type, eventually returning to the branching

point. When the satisfaction of the relevant condition cannot be determined

in advance, the cycle in the process is indeterminate.

The difference between open &-splits and closed &-splits is that the

branches of a process represented by the former are not conceived ever to

converge at some later point back into a single stream while in dosed &-

splits they are. In and of themselves there is no essential difference between

open X-splits and closed ones, since in both cases there can only be a single

process that emanates from the branching point. However, in the context of

a larger diagram there is a crucial difference. For only dosed X-splits can be

used to place conditional branches_in the midst of a larger process that is

to be construed as a single stream. An open X-split represents two possible

wholly divergent paths a process can take; a dosed X-split represents a mere

option to jog one way or another on the path to a single end.

(3) together with (1) and (2) actually give us our base case for the re-

cursion. (Compare the basic splits with atomic formulas in the grammar for

first-order languages.) Note, however, that the definition is not restricted

only to basic splits. This allows us to count other, more complex sorts of

splits to be defined in (7) as well. (4)-(6) define some important auxiliary

notions. (4) defines the notion of an extensible node, and (5) some useful

graph theoretic concepts, and the notion of essential accessibility needed in

(9).
Regarding (6), L-points and R-points in a prediagram intuitively repre-

sent definite beginning and ending points of a described process or subpro-

cess. If some event is in fact a beginning point of a process, then everything

that follows in that process can be traced back to that beginning point;

this idea is captured in the requirement that all points in the prediagram--

representing the events that make up the process--be accessible from the

L-point. Analogously, if an event marks a definite end point to a process,

then one should be able to trace back from that point to all preceding events

in the process; thus the requirement that an R-point be accessible from all

other nodes in the prediagram.

(7), (8), and (9) are the constructive parts of the definition; they define
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complex prediagrams in terms of less complex parts. Specifically, given the

notion of a dosed prediagram, (7) gives us a recursive rule for generating more

complex closed splits from properly dosed prediagrams and less complex

dosed splits. The rough idea is that if a description represents a process that

splits, then any of the descriptions of the subprocesses that branch off can be

replaced by still more complex descriptions. (7) also defines the important

notion of the scope of a split, to which we'll return shortly.

(8) and (9) tell how to build more complex prediagrams by drawing new

arrows. (8) allows one to draw an arrow from an extensible node in one

diagram to the L-point of another, a natural way in which one might put

together prediagrams constructed from descriptions of different parts of a

single system. The explicit purpose of (9) is to provide for the construction

of diagrams that represent processes with (determinate or indeterminate)

cycling. As noted above, this can only be done by drawing an arrow from

some extensible node in a prediagram to some "preceding" box. This is

captured by the requirement that the I-box a out of which the arrow is drawn

must be accessible from the 1-box d to which the arrow is drawn. Consider

for example a process that might be described as follows:

After its construction, a car body enters the painting area where

it activates the paint-jets. It moves through the area and receives

a coat of paint. Then it enters the drying area where it activates

the dryers, and stays there for _0 rnknutes until it is dry. At that

point, sensors check to see if the car body has received enough

paint. If it has it is shunted off down the line; if not, it is put

through the paint-dry cycle again, and continues in the cycle until

it receives enough paint.

To capture this description using the above syntax, one first draws a box

to represent the construction of a car body. Since (let us suppose) we are not

at present interested in the details of the construction, a single 1-box labeled

"Construct Car Body" (CCB for short) is used to represent that process.

A second box labeled "Enter Paint Area" (EPA) is then introduced with

an arrow (using (8)) drawn from the first box to the second. Three more

boxes labeled "Paint Car Body" (PCB), "Enter Drying Area" (EDA), and

"Dry Car Body" (DCB) respectively in the same fashion, each connected

to the previous box by an arrow (by (8) once again). The two possible

:12
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outcomes of checking the paint are represented by an open split involving an

XOR junction, with one box of the split labelled "Enough paint" (EP) and

another labeled "Not Enough Paint" (not-EP). This open split can now be

joined to the DCB box by (8) once again. A further box is introduced along

the top branch of the split to represent (or summarize) the process that a

car body enters upon completing the paint/dry cycle. All that remains is to

represent the loop back into the cycle from the not-EP l-box. This is allowed

by (9) since the not-EP box is essentially accessible from the EPA box, and

the desired arrow is not within the scope of a dosed split, nor connected to

"illegal" 1-boxes.

The condition that arrows cannot be drawn into or out of the scope of

a dosed split stems from the idea that subprocesses emanating from the L-

point of a dosed split should be isolable, i.e., that the only way in or_out of a

process represented by a dosed split is from its beginning or end, respectively.

If it should happen that a subdiagram within a dosed spht also accurately
pictures a certain distinct Subprocess outs ide_the process represented by the

split, then in constructing a prediagram one shouid simply copy the relevant

section where it is needed in the prediagram, rather than to cross a split's

logical boundaries.

The prediagram resulting from the above construction isshown in Fig-

ure 3. (The box labeled "Decomposition of CCB" dangling off the CCB box

serves as _a pointer to its more detailed meaning, or decomposition; this will

be discussed below.)

The requirement (9) that a be essentially accessible from a' is added to

rule out the use of (9) to generate certain pathological cycles that would arise

if we were to allow arrows between 1-boxes a, a' such that a is accessible from

a' only because of a loop--generated by a previous application of (9)--from

a, say, back to another 1-box a" from which both a and a' are accessible. 1_'

That a' cannot-be the R-point of a closed split, as required by (iii), stems

from the fact- tha_such nodes=_mark the_:end _ of-a sp-_ proces_s,- and hence

should only have arrows coming into it from within the split2 That it cannot

be th_%L-p0int of the diagram, represents the idea that processes typically

have a unique starting state--represented by the L-point of the prediagrams

that represent them--and hence it should not be possible to loop back to

17Such pathological cycles deserve much _more discussion, but it would take us too far
f_om the main point of this paper to do so here.

33

J

J

R

g

I

!

g

!
m
!
m
I

i
I

S

I

Q

m

|

|
m

B

D

_==
J

D
w
mm
!

I

S J

!
i

g



k,a

_.,w J

H...I

Dcc0mp0sitioa
of COB

Figure 3: Prediagram for Paint/Dry Cycle

such states once the process has begun, is

Several further remarks are in order. First, except for th,e "target" node

in the construction of a cycle, no node in a prediagram has more than one

incoming arrow. Initially, this might lead one to believe that IDEF3 is inca-

pable of representing convergent processes, where several processes in parallel

converge to a single event. In IDEF3, however, convergence is to be repre-

sented by the convergence of several arrows to a single &-junction at the end

of a dosed split. In representing convergence by a dosed split_ the presup-

position here is that all parallel convergent processes have a common initial

path, that tracing back down each parallel process will reveal a common ori-

gin from which they all split--perhaps only the signing of a purchase order,

or the system timer striking 8:00 a.m., but a common origin nonetheless. For

otherwise there seems no initial ground that "parallelizes" the processes that

converge in the first place.

Second, a number of constructs that will appear in IDEF3's more prac-

tical guise have been omitted here. For example, a common junction is

inclusive OR, whereas we have included only ezcIusive OR.. The reason for

1sit should be noted though that this condition is dispensable.
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this omission is that inclusive disjunction can be defined in terms of the other

two. 1_ Thus, for theoretical purposes it is redundant. In practice, of course,

inclusive OR is very convenient, indeed, perhaps essential, since, e.g., it cuts

down greatly on the size of certain prediagrams. It is also the most natural

meaning of many ordinary uses of the word 'or' in common process descrip-

tions, and hence is needed to capture such descriptions in the most natural

way.
A second construct that for convenience we are also omitting are "rela-

tional links." These are links which can encode a wide variety of temporal

and other information about events within a given process. These, like in-

clusive disjunction, are easily added to the theory.

Third, along the same lines, we note that further refinements on junctions

can be defined that are useful in practice. For instance, it is possible to dis-

tinguish between s'grtchronous &-junctions, where all the events represented

by a given split must occur simultaneously, and asynchronous &-junctions,

where this is not required. Since these are all definable in terms of our current

apparatus, it will be omitted to avoid needless complexity. (These junctions

and links, and more besides, can be found in the "user-oriented" version of

IDEF3 sketched in the IDEF3 technical report.)

Finally, we note that we have made certain decisions that take form in

corresponding restrictions on the sYntax. It should be noted that there is a

great deal of flexibility here, and that, within limits, alternative choices and

views could be embodied in alternative definitions of the syntax.

3.2 Elaboration Tables and Decompositions

In this section we bring together our first-order syntax with our graphical

syntax. As noted above, the label on a box is just an abbreviation for or

terse description of (the content of) an associated elaboration. Theoretically,

labels are superfluous; we could just as easily attach elaborations to boxes

directly. But in practice, where one actually uses the 2'd graphical syntax,

since there are no limits placed on the complexity of elaborations, there

needs to be a more concise way of identifying the state of affairs a box

represents. This is the role of the labels. The boxes in a prediagram are

-_Specifically, an OR-split can be defined in terms of an X-split, with each branch letuting

to a possible co,unction of all the branches of the OR-split that could occur.
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associated directly with elaborations via what we call an elaboration table--

essentially, a one-to-one mapping from boxes to daborations. In practice, an

daboration table might take any one of a number of forms depending on the

relevant implementation of IDEF3: a pencil and paper implementation might

use an actual written table on a separate sheet, whereas in a graphic-based

computational implementation, boxes might take the form of a data structure

one of whose elements is a pointer to an associated elaboration. However it

is done, the point is that both labels and daborations will appear in any

implementation of IDEF3. Hence, since the theoretical cost of retaining

labels in the theory is negligible, we thought it best to keep the formal theory

more in step with practice at this point.

Formally then, where :r is a prediagram, an elaboration table r for 7r is a

function that maps each l-box of _r to an associated elaboration.

Let us illustrate these ideas by taking the paint-dry cycle prediagram

above to the next stage in the construction.of a complete IDEF3 diagram.

Since we are for the moment suppressing the details of the actual construction

of a car body when our focus is on the paint/dry cycle per se, the elabora-

tion of the CCB box might be no more than [i1,{}, {Constructed(z)}]. (The

empty braces indicate that (as yet) no conditions have been placed on the

temporal intervals during which the car body construction process occurs.)

The EPA box's elaboration would be something like [i2, {},On(z, CB-carrier),

Enters(z, paint-area), Activates(z, paint-jets)}], and that of the PCB box

something like [is, {}, {On(z,CB-carrier), Moving(z), Activated(paint-jets),

Being-painted(z)}]. The EDA box's elaboration, analogous to the EPA's,

might be [i4, {},On(z, CB-carrier), Enters(z, drying-area), Activates(z, dry-

ers)}], and that of the DCB box might be [i5, {20-minutes(is)}, {On(z,CB-

carrier),-,Moving(z), Activated(dryers), Drying(z)}]; that of the EP box

might be [is, {},{On(z,CB-carrier), -,Moving(z), Activated(paint-sensors),

Value-of(paint-sens0rs,1)}], and that of the not-EP box [i6, {}, {On(z,CB-

carrier),--Moving(z),Activated(paint-sensors), Value-of(paint-sensors, 0)}];

and as with the process prior to the paint/dry cycle, the process that contin-

ues after the paint/dry cycle is suppressed and summarized by a single box.

This possible elaboration is depicted in tabular form in Figure 4.

The notion of suppression of detail in a diagram can be cashed in a

rigorous way in IDEF3. The box noted above attached to the CCB box serves

as a pointer to another prediagram/elaboration table combination (_",r'),

one which, turns up the power of our descriptive microscope on the CCB
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Figure 4: Elaboration Table for Paint/Dry Cycle Prediagram
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box and represents its contents in greater detail. This is (roughly) what

we refer to as a decomposition of the CCB box. A possible decomposition

prediagram for the CCB box is pictured in Figure 5.

Decompositions, along with prediagrams and elaboration tables, are the

final ingredient of full-blown IDEF3 diagrams. Informally, an IDEF3 diagram

will consist of three elements: a prediagram % an daboration table _, and

an decomposition function 6; the diagram itself can thus be thought of as a

triple (Tr, e,6) consisting of such elements. A decomposition function for an

IDEF3 diagram is a partial function--i.e., a function that is not necessarily

defined everywhere in its domain--on the l-boxes of 7r that takes each box

on which it is defined to another IDEF3 diagram.

We do not want the decomposition of any given box in a prediagram

to contain that very box, or for that matter any other box in 6, or any of

the boxes in its decomposition (if it has one). A decomposition, after all,

is a closer look at some event within a larger process; hence it seems quite

reasonable that no smaller part of that event could contain within itself the

original event, or any other part of the larger system. This conception of

processes in fact comports well with the way one would draw decompositions

if one were using a large sheet of paper: each decomposition would consist of

entirely new boxes drawn below the decomposed box of the original diagram.

At the same time, we do want to allow "nested" decompositions. That is,

we always want it to be possible to raise the power of our descriptive micro-

scope even farther than we have at a given point in the course of description

capture. Thus, we want to allow boxes within decompositions themselves to

admit of further decomposition, and boxes within those decompositions to

admit of yet further decomposition, to any desired finite depth.

To achieve all this in a rigorous fashion, we proceed as follows. First,

since the set B of boxes is infinite, we can divide it up into infinitely many

mutually disjoint infinite sets B0, B1, etc. (Labels, as noted, are theoretically

superfluous, and can be ignored in the present context.) We will use the

first of these sets, B1, to define an initial (base) set diago of basic IDEF3

diagrams all of whose decomposition functions are everywhere undefined; no

box in a diagram at this stage, that is, has a decomposition. (Recall that

decomposition functions are partial, and hence need not be everywhere, or

even anywhere, defined.) At the next stage we build a new set diagt of

IDEF3 diagrams out of the boxes in B2, only now we allow them to contain

decomposition functions that take 1-boxes to diagrams in the base set diago.
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This will enable us to satisfy the condition that the decomposition of a given

box b in diagl cannot contain b itself, or any other box b' at the same "level"

as b in the diagram.

This is not quite enough, though. For, as we are defining them here,

boxes in IDEF3 diagrams all represent temporally nonoverlapping events,

i.e., events which intuitively could have no common parts. Hence, we also

require that the decompositions of any two distinct boxes b,b _ of 7r must

not contain any common box. (In fact, IDEF3 can be generalized to allow

temporal overlap, but even in this case it turns out to be most convenient still

to enforce this condition and represent even the common parts of overlapping

events by distinct boxes in each decomposition. 2°)

We must impose one further condition given the distinction between

closed and nonclosed prediagrams. Let 7r be a prediagram constructed out of

boxes in B1. We cannot allow any given box b of _" to be mapped to just any

diagram in diago. For if b is nonextensible, i.e., if b has an outgoing arrow,

then it can only be mapped to a closed diagram, u_ since the events repre-

sented by such boxes intuitively do not branch at their end but continue in a

single stream. Speaking more syntactically, since a decomposition represents

a closer look at a given event, we should always be able to replace any box

in a diagram with its decomposition. The only way to do so in the case of

a nonextensible box is to attach its incoming arrows to the L-point of its
decomposition, and its outgoing arrow to the R-point of its decomposition.

This can only be done if we impose the above condition.

Diagrams at successive levels diag,, n > 1 are defined in just the same

way. In general, that is, for n > 0, an nth-level diagram, i.e., an element of

diag,_, is a triple (a',e,6) such that sr is a prediagram whose boxes are in B,,,

is an elaboration table for a', and 6 is a partial function from the boxes

of r to the diagrams in diag,,_l satisfying the above conditions. The set of

all diagrams is then defined to be the union of the diag,,_ for m _ 0. Our

definition thus allows for the nesting of diagrams within diagrams to any

finite degree.

A few brief remarks are in order. First, note that the condition that the

decomposition function for an nth-level diagram only take _zlues in diag,,_l,

_°This condition enables us to streamline the semantics considerably, since, as we
will see, the definition of realization for prediagrams in diago serves for all prediagrams

generally.
_!Where a diagram (s', e, 6/ is closed just in case _"is closed.
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and not diag,_ for all m < n is not at all restrictive since each level contains a

"copy" of all previous levels? 2 Thus, there is no diagramatic structure avail-

able for decomposition functions at one level that is unavailable at successive

levels.

Second, the reader may have noted similarities between the structure of

IDEF3 diagrams and dynamic record types in high level languages like Pascal.

In addition to a variety of standard fields, such record types can contain one

or more fields whose value for a given record consists of a pointer to a record of

the same type. In the same way, a decomposition function for a given IDEF3

diagram (applied to a box in the diagram) points to yet other diagrams.

Unlike true dynamic record types, though, our hierarchical construction rules

out the possibility of diagrams that point back to themselves.

Let us make our definition entirely formal for good measure. For a given

graph _" constructed out of the elements of IDEF3 graphical syntax, let

bozesQr) be the set of boxes that occur in _', let PD(:r) mean that 7r is

a prediagram, and let ET(¢,Tr) mean that _ is an daboration table for 7r.

Where a = (Tr, _, g), let (a)l = _'. Then we have:

diag o = {(7r,_,6) I PD(Tr) and boxes@) c_ Bo and ET(e,:r) and 6 = 0};

diag,, = {(r,e,6) ] PD(_r)and boxes(_r) C_ B,_ and ET(e,r) and domain(6) C_

bozes(_r) and range(_) C_ diag,__, and Vz e domain(6), if not-EXTENSI-

BLE(z), then CLOSED(6(z)), and Vx,y e domain(6), bozes((6(z))l) A

bozes((5(y))_) = 0), for n > O;

diag = O,_>0 diagm.
N

4 IDEF3 Semantics

We now want to give a semantics for IDEF3 graphs that will enable us to

hook them up with all the more standard first-order apparatus that we de-

veloped above. An 1-box in a diagram represents a (part of) process that is

described by the associated daboration E = [i,{¢1,...,¢,,,}, {_1,... ,_o,}].

_For example: since decomposition funcii0ns are partial and each B, is infinite, diag t

contains in particular all the diagrams that can be formed from the boxes of B1 that,

like the basic diagrams, have decompositions that are undefined everywhere. There will

thus be an isomorphic copy in diag 1 of each basic diagram in diag o, and similarly for all

succeeding levels.
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An instance of that process will exist if during the temporal interval repre-

sented by i (i.e., if at the value of i under some assignment) all the sentences

_b_,_oj are true. As noted already, the use of variables is crucial to this idea,

since object variables can have different objects assigned to them as values,

and temporal interval variables different temporal intervals. This enables one

to instantiate the same elaboration in many different ways, thus capturing

the different ways in which a general process might be realized. We make

these ideas more formal in this section.

4.1 Instantiation Graphs

Interpretations provide mathematical models of the general structure of a

described process. Interpretations together with variable assignments enable

one to model, or realize, specific instances of the general process.

Let us fix a given IDEF3 diagram (7r,_,8) written in some language £.

For any 1-box b C bozes(_r), let ¢(b) be the elaboration associated with b by

the daboration table _. Given an interpretation I for £, an £-I-assignment

can be said to realize the 1-box b just in case it realizes _(b).

Now, with every prediagram 7r can be associated a set (generally infinite)

of associated graphs which characterize the possible ways in which the sys-

tem that the prediagram describes can be instantiated. Thus, we call these

associated graphs instantiation graphs for _r. If _" has no cycles (i.e., no paths

that begin and end at the same node), then its instantiation graph (there is

only one in this case (up to isomorphism)) is especially easy to characterize,

since it will look just like _r itself except with its junctions removed. That is,

roughly, form the instantiation graph for 7r by beginning with the L-point of

r and then tracing down from the L-point, add as nodes all the 1-box "chil-

dren" of any &-junction one comes to, and only one of the l-box children of

any X-junction one comes to until one cannot continue. The procedure for

generating instantiation graphs from prediagrams 7r with cycles is similar,

except one must in addition allow an instantiation graphs to "unfold" the

cycles some finite number of times (if possible; some legitimate prediagrams

with unconditional cycles have only infinite instantiation graphs).

(It might be wondered why junctions are removed from instantiation

graphs. The reason is that junctions are needed primarily because of the

two ways in which a process might split that axe recognized in IDEF3--

conjunctive splits and exclusive disjunction splits. If there were only one
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sort, then we could just as well have multiple arrows coming straight out of

an 1-box. In an actual process instance there is in fact only the first sort of

splitting; where a diagram has an X-split, representing possible continuations

of the process represented by the diagram, any corresponding instance of the

process goes either 0ne way or the other; there is no actual disjunctive split-

ting at the instance level. The splitting is only at the type level. Thus, in

an instantiation graph, since there is only one kind of splitting where the

process flow diverges into several streams--junctions are superfluous? 3)

Despite the simplicity of these ideas, it takes a little work to give it

formal expression. To begin, let A = (_-,e, g) be an IDEF3 diagram, and

let r = IV, A) be a graph such that all the vertices z E V are of the form

(a,n), where a is a node of _', and n is a natural number greater than 0. As

usual, A--the set of edges, or arcs, of the graph--is a set of pairs of members

of V (hence a set of pairs of the form ((a,n),(b,m)); intuitively, each pair

represents an arc from the first member to the second). If a and b are nodes

of _r, then we say that b is a successor of a (in _'), and a a predecessor of b,
if there is an arc from a to b in 7r.

Now, say that F is _r-generated iff, first, (a, 1) C V iff a is the L-point of

7r, and for all nodes a of _" and all natural numbers n, if <a, n) E V and a has

_Actually, for all we have said there is a further reason for retaining &-junctions.

Our syntactic rules allow _ested &'junctions (a_nndX-junctions), i.e., junctions that are
successors of other junctions. In these cases &-junctions can serve as grouping delimiters

that might well put constraints on the relations between events that instantiate a diagram.
For examplel we_might want to distinguish two cases where three events branch off from

a given event: on the one hand, we might want to allow the three to begin at any three
times after the given event; on the other hand, we might want to group two of the events
and constrain matters such that the two must begin either before or after the third, and
hence that they _can_not_sa_wiclQ e th-e third tempor_yl-The most: natur_ :_y/o group
the two with our syntax would be to represent them as a small closed split whose L-point
is, along with a box representing the third event, an immediate success0_of another &-
junction. But then, _jjunctions ate:diminated in instant_ati0n graphsl it seems that this

grouping information would be lost. However, as already noted, the syntax of IDEF3
allows one to put............addRional constraints on tempora[intervals other than the intervals

repre_ the do_nant temporal_m_rva] of a:d-elaboratlon. _ieason for
allowing this is to enable one to put constr_nts on the temporal intervals associated with
the distinct branches of branching processes. Thus, one can simply transfer the grouping

information carried by the nested &:-junctions explicitly int_: the_ elaborations in terms
of the appr0p_iate conditions. (Note how this capability is captured in the semantics in
Clause 4 of the definition of realization for instantiation graphs in Section 4.2.)
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any successors, then

1. if a has a unique successor b, then

(a)

(b)

if b is a box, or the L-point of a split, or the R-point of a closed

X-split, then bE A_+_ and ((a,n),(b,n + 1)) E A;

if b is the R-point of a dosed &:-split, then (i) (b,n + j) E V,

where j is the least number such that for each of b's predecessors

c, (c, i) E V, where m < i < n + j, where rn is the largest number

< n such that (b',m) C 1I, where b' is b's L-counterpart, and (it)

((a,n),(b,n + j)) e A;

2. if a does not have a unique successor, then

(a) if a is the L-point of an &z-spht, then all of a's successors are in

A,,+I, and for each such successor b,.((a,n),(b,n + 1)) E A;

(b) if a is the L-point of an X-split, then exactly one of a's successors

b is in A_+I, and ((a,n),(b,n + 1)) C A.

If a is not a junction, a vertex (a,n) in a ,r-generated graph represents an

occurrence of an instance of the event represented by a in the prediagram :r

at a certain stage in a run of the system represented by the entire prediagram.

The need for indexing a with a number n arises from the possibility of cycles

in the system--different indices paired with the same box a represent different

instances of the same event. The rather complex l(b) in particular ensures

that the R-point of a closed split is assigned the right index relative to its

predecessors for a given possible run of the system.

We illustrate these ideas in Figure 6, where we have a prediagram _" and

an associated _'-generated graph. For formal purposes we are ignoring labels

and simply tagging the boxes of the prediagram directly (in a full fledged

prediagram, of course, a2, a4 and as would all have to be junctions). Note

that a" contains a cyclic X-split down one path of an &:-split. This allows for

indeterminate cycling from instances of box a3 to instances of box as and

back again. The :r-generated graph represents a process instance in which

there is just one such cycle before the process flows from (an instance of) a3

to aT, and finally to a11. Note that the two traversals of a3 are distinguished

by two different indices, 3 and 6 respectively.
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The prediagram requires that instances down each path complete before

there can be an instance of a11. This means that we need to have arcs

running from the "last" event down each branch to the same instance of alx,

in this case represented by (an, 11). So (a10,4) has to "wait" until the upper

branch is completed before being connected to the close of the split as; we

cannot, that is to say, index as with the number 5 and define an arc from

(alo,4) to (as,5), since (as,5) would indicate different point in time than

does (as, 10). This is assured by l(b). To see this, let (a,n) in the definition

be (aa0,4), and let b be as (the R-point of the above closed &-split; then

the definition requires that for each of as's predecessors c---in this case only

aT is relevant--if Ic, i) is a node--in this case (a_,9), then where j is the

least number such that when added to n the sum is greater than any such

i--so j is 6 in our example--(as,4 + 6), i.e., (as,10) must be a vertex of

our r-generated graph, and there must be an arc from (aa0,4) to (as,10).

The number m in the definition--which is the number 2 here and plays no

significant role---ensures in general that we are dealing with instances within

the same subprocess represented by the entire dosed split, since they too can

be traversed more than once in a given large process. Such multiple traversals

would be indicated by different indexed occurrences of a2. The role of m is to

ensure that we always are dealing with instances of events within an instance

of the split that have occurred since the most recent traversal of a2.

A 7r-generated graph F = IV, A) is said to be 7r-admissible iff it has no

proper 7r-generated subgraph? 4 The reason for this definition stems from the

fact that nothing in the idea of a r-generated graph rules out the possibility of

all sorts of extra "junk" getting thrown into the nodes or arcs of such a graph

over and above what is sanctioned by the definition alone. For instance, the

sorts of graphs we are interested in are simple, i.e., they have at most one

arc between any two given nodes; but, e.g., an extraneous arc can be added

between any two nodes of a _'-generated graph and the result will still be a

r-generated graph. For the definition tells us only what must be present in

such a graph, not what must not be present. Thus, such graphs at a given

stage n do not necessarily represent the state of a given run of the system

being represented by _" at that point. We filter such unintended graphs out

of consideration by focussing our gaze on only the "smallest" graphs that

-'-:'Where _ g,_ph r_ =_V',A'> is • ,,,bg_ph of • S,_ph r = <v,a> _r v' c v _d
A' C_A. F' is a prope_ subgraph of F if it is a subgraph and either N' ¢ V or A' #- A.
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satisfy the defin!ti_on, hence those with no extraneous nodes or arcs. The

or-generated graph of Figure fi is also :r-admissible; it could be transformed

simply into an inadmissible graph simply by, say, adding a new unconnected

node tas,17( to the set of vertices.

Given a :r-admissible graph (V, A), our final task is to eliminate all the

junctions from V and revise A in the obvious way to obtain the graph

(1/'*, A*). That is, in the simplest case, where a and c are boxes of _" and

b is a junction, if ((a,n),(b,m)),((b,m),(c,m + 1)) E A (that is, if there is

an arc from (a,n) to (b,m) and from (b,m) to (c,m + 1)), then we remove

b and the above arcs from V and A respectively, and define a new arc from

(a,n) to (c,m + 1), i.e., we add the arc ((a,n),(c,m + 1)) to A*.

More formally, then, let F = (V, A> be a 7r-admissible graph. Let V* be

V-{(a,n) E Vla is a junction of 7r}, and let A' be A-{r E A[r contains

a junction of _'}. Now let S be the set of all paths ((al,nl),...,(am,n,,,)) of

F, m > 2, such that and al and o_ are boxes of 7r, and for all i such that

1 < i < m, o_ is a junction of _r. So S contains all the paths of F between two

boxes whose intervening nodes are all junctions. Let S' be the set of all pairs

(al,am) such that (a!,... ,am) E S, i.e., the set of all pairs consisting of the

first and last elements of some path in S; S' is thus the result of deleting all

the intervening junctions between the first _and iast boxes in a path in S. Let

A* be A' uS'. Then where F* is il/'*,A*), w e say that F* is an instantiation

graph for r. The instantiation graph that results from removing the junction

vertices from the 0r-generated graph of Figure 6 is illustrated in Figure 7.

4.2 Realizing Instantiation Graphs
1

Now we want to say what it is for an instantiation graph to be realized by

a class of associated assignment functions (in a given interpretation). We

will set up a correlation between each node of an instantiation graph and an

associated assignment function for the daboration associated with that node.

For the assignment functions as a whole to realize the graph, they have to

interpret it jointly in such a way as to represent a given run of the system;

e.g., they have to map adjacent vertices to adjacent temporal intervals, they

have to interpret identical variables in the corresponding elaboration tables

of adjacent vertices by means of the same objects to capture object flow

through the system, etc.

The apparatus is straightforward, but a bit involved. First we set up the
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Figure 7: Instantiation Graph for rr

relevant syntactic apparatus. Let L: be a first-order language used of the

sort defined above and A = (rr,¢, 5) be an IDEF3 diagram whose language

for its elaborations is £, and let F = (V,A) bean instantiation graph for

A. For a given box a, of rr, let i, be the dominant temporal variable of the

elaboration e(a) associated with a. We shall assume for ease of exposition

that ¢(a) contains no quantified formulas for every box a of 7r.

Thus, for the corresponding semantic apparatus, let I be an interpretation

for Z:, and let F be a mapping of the vertices in V to assignment functions

such that, for all (a,n) E V, F((a_n)) is defined on only the variables in

¢(a). 2_ We write 'a,_' for the assignment F((a,n)). For any such assignments

a, a', we define 'a -,- a" to mean that a and a I agree on all the variables on

which they are both defined.

Given all this, we say that F realizes r just in case, for all ((a, nl, <b,m)) E

A,

_sIt is not only more convenient to use such "partial" assignments, but it also corre-

sponds more closely to the way in which assignments would be implemented in a compu-
tational tool. In a more detailed treatment the notion of a partial assignment would be

defined more explicitly.
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b realizes ¢(b);1. c_ realizes e(a) and a,,_

b
2. o_ _a=;

3. if (b,m) is (a,n)'s only successor and (a,n) is (b,m)'s only predecessor,
b • 28then c_ (io) meets a_ (tb);

4. if (a, rt) has more than one successor, then (i) for all its successors

_' (ii) there is one successor (c,l) such that a,_(io)(c,l), (c',r), ~ at,,
meets aT(i_ ) and (iii) for all remaining successors (c',l'), a_(io) meets

C t

or precedes ap (i_,);

5. if (a,n) has more than one predecessor, then (i) for all its predeces-

c' (ii) there is one predecessor (c,l) suchsors (c,l),(c',l'), a_ -,_ ae,

that a'l(ic) meets o_(io) and (iii) for all remaining predecessors (c',/'),
C o •

at, ('c') meets or precedes a_(i=);

(1) is required because, for F to realize F, the assignment it associates

with each vertex must realize the corresponding elaboration. The reason

behind (2) takes us back to our remarks on object flow. As noted, the same

free variable occurring in the elaborations of connected boxes represent the

flow of a single object from one event to another. Thus, we require that for

F to realize an instantiation graph, assignments for adjacent vertices must

agree on the free variables common to the boxes in those vertices. This is

just what (2) requires_ _

(3) captures the idea that boxes connected by an arrow represent tern:

porally contiguous events within a larger process. This is a rather stringent

requirement adopted primarily for ease of exposition. In fact, we can gen-

eralize our apparatus and allow virtually any temporal relation to obtain

between any two given boxes. Temporal contiguity serves here only as a
convenient default.- .............

Similar remarks apply to (4). Splitting in an instantiation graph rep-

resents the branching of a process into several parallel subprocesses. We

have chosen as a default semantics that the event represented by the vertex

that splits meet at least one of the branches, and that meet or precede all the

:eWhere, recall, an interval _" meets another _ iff the end point ofl" is the beginning

point of _a. _ _
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others. This is captured by 4(ii) and 4(iii). 40) places the additional require-

ment that any two of the assignments associated by F with the successors of

the branching vertex agree on free variables on which they are both defined.

This permits one in particular to place additional temporal constraints on

the intervals occupied by the branches of branching processes, e.g., that one

of the branches precede another, that two begin together and precede a third,
etc.

(5) is essentially the "dual" of (4) for the "back end" of a splitting process

that eventually converges.

We say that I realizes a basic IDEF3 diagram 27 (_', _, 6) iff, for any assign-

ment function _ on the variables of the elaboration _(p) of the L-point p of

_" that realizes ,(p), there is an instantiation graph F and a mapping F from

the vertices of F onto assignment functions such that (i) F(p, 1) = a, and

(ii) F realizes F. (Intuitively, this captures the idea that any time the initial

process of a system occurs, the entire system will be instantiated in some

way.) Though we will avoid the details here, it should be quite clear that

any nonbasic IDEF3 diagram A can in principle be "expanded" to a basic

diagram A'---called its basic expansion--that explicitly includes all of A's

nested decompositions. 2s We can thus say that I reahzes an IDEF3 diagram

A generally just in case it realizes its basic expansion.

5 Conclusion

This paper has provided a formal definition of the process description cap-

ture method (IDEF3) using an extended first-order logic. We began by dis-

tinguishing between descriptions (recordings of the beliefs about the world

around us) and models (systems of objects and relations that describe a real-

world system). We described the term "process" in its general sense as a

unit of behavior in IDEF3. Next, we reviewed the fundamentals of first-order

logic, and extended it to include temporal and index semantics. Finally,

we described the IDEF3 notion of an elaboration, and formally specified the

graphical syntax for the method.

27I.e., recall, a diagram with no decompositions.
2SI.e., all the decompositions of the boxes in &'s prediagram, all the decompositions of

the boxes in those decompositions, etc.
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This formalization was necessary for five reasons: (1) to identify the in-

formal intuitions that motivate the method, (2) to provide a technical basis

for integration with other methods, (3) to provide an objective basis for com-

parison with other methods, (4) to provide technical basis for the design of

other methods, and (5) to provide accurate specifications for the design of

automated IDEF3 support tools. This formalization, combined with the cor-

responding technical report and supporting documents, should fully describe

the IDEF3 process description capture method.
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